Skip to main content
Version: 0.10

Cluster Deployment

It's highly recommended to deploy the GreptimeDB cluster in Kubernetes. There are the following prerequires:

  • Kubernetes(>=1.18)

    For testing purposes, you can use Kind or Minikube to create Kubernetes.

  • Helm v3

  • kubectl

Step 1: Deploy the GreptimeDB Operator

Add the chart repository with the following commands:

helm repo add greptime https://greptimeteam.github.io/helm-charts/
helm repo update

Create the greptimedb-admin namespace and deploy the GreptimeDB operator in the namespace:

kubectl create ns greptimedb-admin
helm upgrade --install greptimedb-operator greptime/greptimedb-operator -n greptimedb-admin

Step 2: Deploy the etcd Cluster

The GreptimeDB cluster needs the etcd cluster as the backend storage of the metasrv. We recommend using the Bitnami etcd chart to deploy the etcd cluster:

kubectl create ns metasrv-store
helm upgrade --install etcd oci://registry-1.docker.io/bitnamicharts/etcd \
--set replicaCount=3 \
--set auth.rbac.create=false \
--set auth.rbac.token.enabled=false \
-n metasrv-store

When the etcd cluster is ready, you can use the following command to check the cluster health:

kubectl -n metasrv-store \
exec etcd-0 -- etcdctl \
--endpoints etcd-0.etcd-headless.metasrv-store:2379,etcd-1.etcd-headless.metasrv-store:2379,etcd-2.etcd-headless.metasrv-store:2379 \
endpoint status

Step 3: Deploy the Kafka Cluster

We recommend using strimzi-kafka-operator to deploy the Kafka cluster in KRaft mode.

Create the kafka namespace and install the strimzi-kafka-operator:

kubectl create namespace kafka
kubectl create -f 'https://strimzi.io/install/latest?namespace=kafka' -n kafka

When the operator is ready, use the following spec to create the Kafka cluster:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
name: dual-role
labels:
strimzi.io/cluster: kafka-wal
spec:
replicas: 3
roles:
- controller
- broker
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 20Gi
deleteClaim: false
---

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: kafka-wal
annotations:
strimzi.io/node-pools: enabled
strimzi.io/kraft: enabled
spec:
kafka:
version: 3.7.0
metadataVersion: 3.7-IV4
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
entityOperator:
topicOperator: {}
userOperator: {}

Save the spec as kafka-wal.yaml and apply in the Kubernetes:

kubectl apply -f kafka-wal.yaml -n kafka

After the Kafka cluster is ready, check the status:

kubectl get kafka -n kafka

The expected output will be:

NAME        DESIRED KAFKA REPLICAS   DESIRED ZK REPLICAS   READY   METADATA STATE   WARNINGS
kafka-wal True KRaft

Step 4: Deploy the GreptimeDB Cluster with Remote WAL Settings

Create a GreptimeDB cluster with remote WAL settings:

cat <<EOF | kubectl apply -f -
apiVersion: greptime.io/v1alpha1
kind: GreptimeDBCluster
metadata:
name: my-cluster
namespace: default
spec:
base:
main:
image: greptime/greptimedb:latest
frontend:
replicas: 1
meta:
replicas: 1
etcdEndpoints:
- "etcd.metasrv-store:2379"
datanode:
replicas: 3
remoteWal:
kafka:
brokerEndpoints:
- "kafka-wal-kafka-bootstrap.kafka:9092"
EOF

When the GreptimeDB cluster is ready, you can check the cluster status:

kubectl get gtc my-cluster -n default

The expected output will be:

NAME         FRONTEND   DATANODE   META   PHASE     VERSION   AGE
my-cluster 1 3 1 Running latest 5m30s

Step 5: Write and Query Data

Let's choose to connect the cluster using the MySQL protocol. Use the kubectl to port forward 4002 traffic:

kubectl port-forward svc/my-cluster-frontend 4002:4002 -n default

Open another terminal and connect the cluster by mysql:

mysql -h 127.0.0.1 -P 4002

Create a distributed table:

CREATE TABLE dist_table(
ts TIMESTAMP DEFAULT current_timestamp(),
n INT,
row_id INT,
PRIMARY KEY(n),
TIME INDEX (ts)
)
PARTITION ON COLUMNS (n) (
n < 5,
n >= 5 AND n < 9,
n >= 9
);

Write the data:

INSERT INTO dist_table(n, row_id) VALUES (1, 1);
INSERT INTO dist_table(n, row_id) VALUES (2, 2);
INSERT INTO dist_table(n, row_id) VALUES (3, 3);
INSERT INTO dist_table(n, row_id) VALUES (4, 4);
INSERT INTO dist_table(n, row_id) VALUES (5, 5);
INSERT INTO dist_table(n, row_id) VALUES (6, 6);
INSERT INTO dist_table(n, row_id) VALUES (7, 7);
INSERT INTO dist_table(n, row_id) VALUES (8, 8);
INSERT INTO dist_table(n, row_id) VALUES (9, 9);
INSERT INTO dist_table(n, row_id) VALUES (10, 10);
INSERT INTO dist_table(n, row_id) VALUES (11, 11);
INSERT INTO dist_table(n, row_id) VALUES (12, 12);

And query the data:

SELECT * from dist_table;